Source code for construe.lowlight

"""
LowLight image enhancement benchmark runner
"""

import os
import numpy as np
import tensorflow as tf

from .datasets import DATASETS
from .exceptions import DatasetsError
from .benchmark import Benchmark, limit_generator
from .models import load_lowlight as load_lowlight_model
from .models import cleanup_lowlight as cleanup_lowlight_model
from .datasets import load_lowlight as load_lowlight_dataset
from .datasets import cleanup_lowlight as cleanup_lowlight_dataset


[docs] class LowLight(Benchmark):
[docs] @staticmethod def total(**kwargs): ## Return number of lowlight images from the manifest use_sample = kwargs.pop("use_sample", True) name = "lowlight-sample" if use_sample else "lowlight" if name not in DATASETS: raise DatasetsError("lowlight dataset not found in manifest") return DATASETS[name]["classes"]["low"]
@property def description(self): return ( "lowlight enhances image quality using a convolutional " "model that understands how to enrich low-light images" )
[docs] def before(self): # Load and setup the interpreter for the lowlight dataset model = load_lowlight_model(model_home=self.model_home) model.resize_tensor_input(0, [1, 400, 600, 3]) model.allocate_tensors() self.model = model self.input_details = model.get_input_details() self.output_details = model.get_output_details()
[docs] def after(self, cleanup=True): if cleanup: cleanup_lowlight_model(model_home=self.model_home) cleanup_lowlight_dataset(data_home=self.data_home, sample=self.use_sample)
[docs] def instances(self, limit=None): dataset = load_lowlight_dataset( data_home=self.data_home, sample=self.use_sample, ) def filter_instances(dataset): for instance in dataset: if os.path.dirname(instance).endswith("low"): yield instance return limit_generator(filter_instances(dataset), limit)
[docs] def preprocess(self, instance): image = tf.io.read_file(instance) image = tf.image.decode_png(image, channels=3) image.set_shape([None, None, 3]) image = tf.cast(image, dtype=tf.float32) / 255.0 image = np.expand_dims(image, axis=0) return image
[docs] def inference(self, instance): self.model.set_tensor(self.input_details[0]["index"], instance) self.model.invoke() self.model.get_tensor(self.output_details[0]["index"])